eFAN Installed best image Crop 6.jpg

Commercial Economizer Fan Controller

U.S. Patent 9671125

R. Mowris, J. Walsh.

June 6th, 2017

eSeal_IMG_20180228_142752_cut3.jpg

Method of Sealing Economizer Perimeter Gap 

saves 3 to 10% on cooling and heating energy

U.S. Patent 9671125

R. Mowris, J. Walsh.

June 6th, 2017

eFan+ Installed 3.jpg

Commercial Economizer Controller

U.S. Patent 9671125

R. Mowris, J. Walsh.

June 6th, 2017

ABSTRACT:

Method for controlling an HVAC ventilation fan in heating or cooling mode and varying the fan-off time delay as a function of heat source or cool source operational time. Method for increasing heater ventilation fan speed from the low speed used for heating to the high speed used for cooling. Method for maintaining the heat pump reversing valve signal at the same position throughout the cool or heat source operational and extended variable fan-off time delay. Method for closing economizer dampers at the end of the cool or heat source operational time while continuing to operate the ventilation fan for an extended variable fan-off time delay. Method for sealing an economizer perimeter gap for an HVAC system. Method to detect ventilation fan accidentally left on and first closes economizer dampers and then turns off fan.


EFC+ Image with Wires Crop.jpg

External Thermostat Fan Controller

 

U.S. Patent 9500386, 9797405

R. Mowris, J. Walsh.

November 22nd 2016                 October 24th, 2017

Abstract:

A method for efficient control of a heater ventilation fan. The method includes switching the heater ventilation fan from low speed to high speed after a brief period P1 following starting, and continuing heater ventilation fan operation for a variable period of time P2 after the heat source has stopped. The period P1 is preferably about four minutes, and the period P2 is determined by the duration of heating and is generally between two and four minutes. Operating the heater ventilation fan at high speed improves heat transfer and efficiency while the heating system is operating, increases warm air movement to the space, satisfies the thermostat set point temperature in less time, reduces heating system operation, and reduces energy use. Continuing heater ventilation fan operation after turn-off maximizes recovery of additional heat from the heat exchanger to improve overall efficiency, extend the off cycle time, and save energy.


EFC Original_Crop_v2.jpg

Fan Controller

U.S. Patent 9500386 and 9797405

R. Mowris and J. Walsh.

November 22nd, 2016 and October 24th, 2017

ABSTRACT:

US 9,500,386 - Apparatus and methods are disclosed for a fan controller. The fan controller determines HVAC system type and heating or cooling mode for gas furnace, heat pump, electric resistance, and hydronic heating, ventilating, and air conditioning (HVAC) systems. For gas furnace heating systems, the apparatus and methods include energizing the blower fan from a lower fan speed used for heating by the furnace-fan controller to the high-speed used for cooling by the fan controller after fan-on delay time P1 to increase delivered heating capacity, satisfy the thermostat sooner and save heating energy. For heat pump, electric resistance, and hydronic heating systems the apparatus and methods include energizing the fan relay after a short fan-on delay time P0 based on previous off-cycle duration P11. For all these HVAC systems, the apparatus and methods vary extended fan-off time delay P2 as a function of cool-source operational time P4 or heat-source operational time P3.

US 9,797,405 - A method for controlling heater ventilation fan operation increases fan speed from low to high after a short delay after turn-on, and continues fan operation for a period of time based on duration of operation, after turn-off. The higher fan speed improves heat transfer and efficiency while the heating system is operating. Continuing fan operation after turn-off maximizes recovery of additional heat from the heat exchanger. Known methods do not provide sufficient air flow to efficiently transfer heat from the heat exchanger to the air, and leave high temperature air (i.e., 110 to 200° F.) in the heat exchanger after turn-off.


Method for Calculating Target Temperature Split, Target Superheat, Target Enthalpy, and Energy Efficiency Ratio Improvements for Air Conditioners and Heat Pumps In Cooling Mode

U.S. Patent 9207007

R. Mowris.

December 8th, 2015

 

Abstract:

A method is described for distinguishing non-condensables from refrigerant over-charge, and refrigerant restrictions from refrigerant under-charge of a cooling system and calculating an amount of refrigerant to be added or removed to the cooling system for optimal performance. Expanded target temperature split and target superheat tables and delta superheat tolerances are provided based on laboratory data and mathematical algorithms. The methods may apply to Fixed Expansion Valve (FXV) and Thermostatic Expansion Valve (TXV) systems and may include making and displaying a diagnostic recommendation regarding non-condensables, refrigerant restrictions, or refrigerant adjustment based upon measurements of return-air wetbulb and drybulb temperatures, condenser entering air temperature, refrigerant suction line temperature, refrigerant liquid line temperature, refrigerant vapor and liquid line pressures, and refrigerant superheat and subcooling temperatures.


AbstrAct:

Expanded temperature split, superheat, enthalpy, humidity, and wet-bulb tables are created and used to determine recommended refrigerant charge and airflow adjustments. Previously unknown enthalpy split values are introduced and calculated in a defined region and then extrapolated using a nonlinear curve fit for undefined regions. Undefined target temperature split values are then calculated from a relationship between temperature split and enthalpy split. Previously undefined superheat values are extrapolated using a nonlinear curve fit from a defined region to obtain superheat values for undefined regions. The expanded temperature split and superheat tables are used during setup or maintenance to calculate refrigerant and/or airflow adjustments for optimal performance of the cooling system in previously undefined operating regions. Previously unknown energy efficiency ratio improvement methodologies are introduced and calculated based on measurements of refrigerant charge and airflow improvements for air-conditioners and heat pumps (in cooling mode).

 


Abstract:

An apparatus for the diagnosis of a cooling system which receives inputs in the form of data about a cooling system, and measurements made from the cooling system, and which then calculates the amount of refrigerant to be removed or added to the cooling system for optimal performance. In addition, methods for ensuring correct setup of a cooling system are disclosed. The methods may apply to FXV (fixed expansion valve) systems and may include making and displaying a prediction of a refrigerant adjustment based upon measurements such as return air wetbulb temperature, condenser air entering temperature, and refrigerant superheat vapor line pressure. A method for ensuring correct setup of a cooling system is disclosed. The method may apply to TXV (thermostatic expansion vave) systems and may include making and displaying a prediction of a refrigerant adjustment based upon measurements such as refrigerant subcooling liquid line temperature and refrigerant subcooling liquid line pressure. A method for ensuring correct setup of a cooling system is disclosed. The method may include making and displaying a prediction of a refrigerant adjustment or of an airflow adjustment based upon measurements such as return wetbulb temperature, return air drybulb temperature and supply air drybulb temperature. Recommendations may also be based upon evaporator coil temperature splits. Methods for visual identification, archiving of associated measurement and verification data, and viewing of data for a correct setup of a cooling system are disclosed. Methods of Maintaining correct setup of a cooling system through use of labels and locking, double-sealing, color-coded, and laser etched Schrader caps are disclosed.